SUPPORT FOR THE ESA BIOMASS MISSION THE BIOMASS OFFICE

Pathe, C., Schmullius, C.

cies

resides

spheric elects

ture

BIOMASS OFFICE

To support the upcoming ESA Biomass Mission, the project EEBiomass funded by the Federal Ministry of Economics and Technology (BMWi) has been initiated to establish a Biomass Office.

Why P-band?

P-band radar backscatter:

 Shows highest sensitivity to biomass compared to all other SAR frequen-

• Can penetrate the canopy in all for-

est biomes and interacts preferential-

ly with the large woody vegetation el-

ements in which most of the biomass

• is more sensitive to biomass than at

higher frequencies (X-, C-, S- and L-

bands); lower frequencies (e.g. VHF)

display even greater sensitivity but

present formidable challenges for

space borne SAR because of iono-

displays high temporal coherence

between passes separated by several

weeks, even in dense forest - allows

use of Polarimetric interferometric

SAR (PollnSAR) to retrieve forest

height and use of Tomographic SAR

(TomSAR) to retrieve vertical struc-

P-band is highly sensitive to disturb-

ances of the biomass

The instrument sensor offers major advances compared to all previous SAR missions because it will use the three techniques SAR Polarimetry (PolSAR), Polarimetric SAR Interferometry (Pol-InSAR) and SAR Tomography

Goals:

- Compile, produce and disseminate relevant information for potential German and international BIOMASS users.
- Identify gaps
- Investigate solutions within the BIOMASS framework
- Establish communication between German and international users to maintain a necessary dialogue in the broader context of the mission.

The Biomass Office is installed at the Max Planck Institute for Biogeochemistry (MPI-BGC) in Jena, Germany. It is a collaboration between the Max-Planck Institute for Biogeochemistry, the Microwaves and Radar Institute (DLR-HR) of the German Aerospace Centre (DLR), the Friedrich Schiller University Jena and the Helmholtz-Centre for Environmental Research – UFZ Leipzig.

The Department of Earth Observation at FSU Jena is responsible for compiling eLearning material about the mission that will be published in EO-College and the project website.

C-BAND 6 cm

L-BAND 24 cm

P-BAND 65 cm

Figure 2

Sensitivity of SAR measurements to forest structure and penetration into the canopy at different wavelengths (Source: The SAR Handbook, p.217)

(TomoSAR) complementary to provide information on forest characteristics.

Figure 4 SAR Techniques offered by the Biomass Satellite (Source: https://directory.eoportal.org/web/eoportal/satellite-missions/b/biomass)

The Products

Level-2 product	Definition	Information Requirements
Forest Above Ground Biomass (AGB)	defined as the dry weight of live organic matter above the soil, including stem, stump, branches, bark, seeds and foliage woody matter per unit area, expressed in t/ha (FAO, 2009). It does not include dead mass, litter and below-ground biomass. Biomass maps will be produced with a grid-size of 200m × 200 m (4 ha).	 RMSE of 20% or 10 t ha-1 fo biomass biomass map every observation cycle
Forest height	defined as upper canopy height according to the H100 standard used in forestry expressed in m, mapped using the same 4 ha grid as for biomass. H100 is defined as the average height of the 100 tallest trees/ ha (Philip, 1994).	 accuracy required is biome dependent, but RMSE should be better than 30% for trees highe than 10 m
Severe disturbance	an area where an intact patch of forest has been cleared, expressed as a binary classification of intact vs deforested or logged areas, with detection of forest loss being fixed at a given level of statistical significance.	 detection at a specified level of significance 1 map every observation cycle

BIOMASS MISSION

Primary Objectives:

- Reduction in Large Uncertainties in Land-use Change Carbon Flux
- Providing Scientific Support for International Treaties and Agreements
- Landscape Carbon Dynamics and Prediction
- Initializing and Testing the Land Element of Earth System Models
- Forest Resources and Ecosystem Services
- Biodiversity and Conservation

Secondary Objectives:

- Subsurface Geology
- Terrain Topography under Dense Vegetation
- Glacier and Ice Sheet Velocities

The ESA Biomass Satellite will be the first operational spaceborne **P-band** Synthetic Aperture Radar (SAR). P-band covers wavelengths from 30 - 100 cm or frequencies from 1 - 0,3 GHz.

Launch planned for 2023

Figure 3 BIOMASS satellite with the Large Deployable Reflector Antenna (Source: https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Biomass/ Forest_measuring_satellite_passes_tests_with_flying_colours, © Airbus)

Parameter	Requirement	
Instrument	P-band full polarimetric interferometric SAR	
Instrument mass	215 kg	
Power consumptiom	250 W	
Data rate		
Center frequency	435 MHz or 0.435 GHz (P-band, 70 cm wave- length)	
Bandwidth	6 MHz (ITU allocation)	
Near incidence angle	>23° (threshold); 25° (goal)	
Spatial resolution (≥6 looks)	≤ 60 m (across-track) x 50 m (along-track)	
Radiometric stability	≤ 0.5 dB (1σ)	
Radiometric bias	≤ 0.3 dB (1σ)	
Table 1 Instrument Characteristics		

Table 2Level-2 Primary mission products(Quegan et al. 2019, Carbone et al. 2021)

Data Dissemination

The European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) jointly developed the **Multi-Mission Algorithm and Analysis Platform (MAAP)**

MAAP offers seamless access to above ground biomass information derived either from ESA (BIOMASS mission) or NASA (NISAR & GEDI mission) Earth observation data It is a virtual open and collaborative IT environment

Figure 1 Comparison of different radar bands from C to P-band (Source: The SAR Handbook, p.217)

Acknowledgements:

This poster has been compiled within the project EEBiomass, which is funded by the Federal Ministry of Economics and Technology (BMWi) with the project number 50EE1904.

This project is a collaboration between the Max-Planck Institute for Biogeochemistry, the Microwaves and Radar Institute (DLR-HR) of the German Aerospace Centre (DLR), the Friedrich Schiller University Jena and the Helmholtz-Centre for Environmental Research – UFZ Leipzig.

Project website: https://eebiomass.org Twitter: https://twitter.com/eebiomass

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA